Global classical solutions of the Boltzmann equation without angular cut-off

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Global Classical Solutions of the Boltzmann Equation without Angular Cut-off

This work proves the global stability of the Boltzmann equation (1872) with the physical collision kernels derived by Maxwell in 1866 for the full range of inverse-power intermolecular potentials, r−(p−1) with p > 2, for initial perturbations of the Maxwellian equilibrium states, as announced in [48]. We more generally cover collision kernels with parameters s ∈ (0, 1) and γ satisfying γ > −n i...

متن کامل

Acoustic Limit of the Boltzmann Equation: Classical Solutions

We study the acoustic limit from the Boltzmann equation in the framework of classical solutions. For a solution Fε = μ+ε √ μfε to the rescaled Boltzmann equation in the acoustic time scaling ∂tFε + v·∇xFε = 1 ε Q(Fε, Fε) , inside a periodic box T, we establish the global-in-time uniform energy estimates of fε in ε and prove that fε converges strongly to f whose dynamics is governed by the acous...

متن کامل

Global classical solutions of the Boltzmann equation with long-range interactions.

This is a brief announcement of our recent proof of global existence and rapid decay to equilibrium of classical solutions to the Boltzmann equation without any angular cutoff, that is, for long-range interactions. We consider perturbations of the Maxwellian equilibrium states and include the physical cross-sections arising from an inverse-power intermolecular potential r(-(p-1)) with p > 2, an...

متن کامل

On a Model Boltzmann Equation without Angular Cutoo 1

A model Boltzmann equation (see formulas (1.1.6) { (1.1.9) below) without Grad's angular cutoo assumption is considered. One proves 1. the instantaneous smoothing in both position and velocity variables by the evolution semigroup associated to the Cauchy problem for this model; 2. the derivation of the analogue of the Landau-Fokker-Planck equation in the limit when grazing collisions prevail.

متن کامل

Optimal Time Decay of the Non Cut-off Boltzmann Equation in the Whole Space

In this paper we study the large-time behavior of perturbative classical solutions to the hard and soft potential Boltzmann equation without the angular cut-off assumption in the whole space Rx with n ≥ 3. We use the existence theory of global in time nearby Maxwellian solutions from [13,14]. It has been a longstanding open problem to determine the large time decay rates for the soft potential ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of the American Mathematical Society

سال: 2011

ISSN: 0894-0347,1088-6834

DOI: 10.1090/s0894-0347-2011-00697-8